A novel property of the RecA nucleoprotein filament: activation of double- stranded DNA for strand exchange in trans.

نویسندگان

  • A V Mazin
  • S C Kowalczykowski
چکیده

RecA protein catalyzes DNA strand exchange, a basic step of homologous recombination. Upon binding to single-stranded DNA (ssDNA), RecA protein forms a helical nucleoprotein filament. Normally, this nucleoprotein filament binds double-stranded DNA (dsDNA) and promotes exchange of base pairs between this dsDNA and the homologous ssDNA that is contained within this filament. Here, we demonstrate that this bound dsDNA can be activated by interaction with a heterologous RecA nucleoprotein filament for a novel type of strand exchange with homologous ssDNA that is external to, and, therefore, not within, the filament. We refer to this novel DNA strand exchange as being in trans. Thus, the RecA nucleoprotein filament is a protein scaffold that activates dsDNA for strand exchange with ssDNA either within the filament or external to it. This new property demonstrates that the RecA nucleoprotein filament makes dsDNA receptive for DNA strand exchange, and it defines an early step of the homology recognition mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel pairing process promoted by Escherichia coli RecA protein: inverse DNA and RNA strand exchange.

Traditionally, recombination reactions promoted by RecA-like proteins initiate by forming a nucleoprotein filament on a single-stranded DNA (ssDNA), which then pairs with homologous double-stranded DNA (dsDNA). In this paper, we describe a novel pairing process that occurs in an unconventional manner: RecA protein polymerizes along dsDNA to form an active nucleoprotein filament that can pair an...

متن کامل

The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange.

The RecA protein-single-stranded DNA (ssDNA) filament can bind a second DNA molecule. Binding of ssDNA to this secondary site shows specificity, in that polypyrimidinic DNA binds to the RecA protein-ssDNA filament with higher affinity than polypurinic sequences. The affinity of ssDNA, which is identical in sequence to that bound in the primary site, is not always greater than that of nonhomolog...

متن کامل

DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA

Yeast RAD51 gene functions in genetic recombination and DNA double-strand break repair. In vitro, in the presence of ATP and replication protein A, RAD51 protein pairs single-stranded DNA (ssDNA) with homologous double-stranded DNA (dsDNA) and catalyzes strand exchange between the synapsed DNA partners. Electron microscopic analyses show that RAD51 forms helical filaments on both ssDNA and dsDN...

متن کامل

RecA protein dynamics in the interior of RecA nucleoprotein filaments.

We characterize aspects of the conformation and dynamic state of RecA filaments when bound to dsDNA that are specifically linked to the presence of the second of the two bound DNA strands. Filaments bound to dsDNA exhibit a facile exchange between free and bound RecA monomers or oligomers in the filament interior that is not seen on ssDNA. The RecA mutant K72R, which binds but does not hydrolyz...

متن کامل

Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments

Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 13 15  شماره 

صفحات  -

تاریخ انتشار 1999